师资队伍



Ahmad Chaddad | 阿哈迈德·恰达德

发布时间:2023-03-13   发布者:蒋鑫  浏览次数:1072

Ahmad Chaddad | 阿哈迈德·恰达德

Professor

Associate member, The Laboratory of Imaging, Vision and Artificial Intelligence (LIVIA)

Ecole de Technologie Superieure, Montreal, Canada

Personal website : http://sai.inpsmart.com:8060/contents/usercenter_30/221.html

                 Personal URL: http://sai.inpsmart.com:8060/contents/usercenter_30/221.html

Experiences

   

  

- Ph.D. (University of Lorraine, France). 

- 7 years of research and teaching experience in Canada (ETS and McGill University) and USA (University of Texas MD Anderson Cancer Center and Villanova University)

-Adjunct professor at the ETS, University of Quebec, Montreal, Canada.

-Project director, The Lady Davis Institute for Medical Research, McGill University, Montreal, Canada



Research Interests

  

My current research focuses on the development and application of AI techniques to solve problems in the fields of:

-Radiomics and radiogenomics

-Medical image analysis

-Machine learning-deep Learning



Five Selected Publications



[1] Chaddad A., Tanougast C., 2023 “CNN approach for predicting survival outcome of patients with COVID-19”, IEEE Internet of Things, DOI: 10.1109/JIOT.2023.3262882 (March 2023).  

 

[2]  Chaddad, A., Lu, Q., Li, J., Katib, Y., Kateb, R., Tanougast, C., ... & Abdulkadir, A. (2023). Explainable, domain-adaptive, and federated artificial intelligence in medicine. IEEE/CAA Journal of Automatica Sinica, 10(4), 859-876. 

 

[3] Chaddad, A., Hassan, L., & Desrosiers, C. (2021). Deep radiomic analysis for predicting coronavirus disease 2019 in computerized tomography and x-ray images. IEEE Transactions on Neural Networks and Learning Systems, 33(1), 3-11. 

 

[4] Chaddad, A., Sargos, P., & Desrosiers, C. (2020). Modeling texture in deep 3D CNN for survival analysis. IEEE Journal of Biomedical and Health Informatics, 25(7), 2454-2462. 

 

[5] Chaddad, A., Daniel, P., Desrosiers, C., Toews, M., & Abdulkarim, B. (2018). Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time. IEEE journal of biomedical and health informatics, 23(2), 795-804.


版权所有,桂林电子科技大学 人工智能学院 地址:广西桂林市金鸡路1号桂电花江校区 邮编:541004
投诉信箱:纪委 saijw@guet.edu.cn, 书记 18026635@qq.com, 院长 chgx@guet.edu.cn, 师德师风举报:saijw@guet.edu.cn
联系方式 电话:0773-2291948 版面设计与程序设计 桂林电子科技大学艺术与设计学院 数字媒体技术 杨兵